DARPA Hydrogel Use As 5G Triggered Bioweapon

May 5th, 2021

Download and share as pdf: DARPA Hydrogel Use As 5G Triggered Bioweapon

It has recently come to my attention that nasal swabs used for sample collection for covid 19 PCR testing in Slovakia were found to be manufactured using hollow nylon nano-tube type fibrous tips, instead of cheap abundant safe and natural cotton, with the tips of these nylon nano-tubes apparently filled with a substance claimed to be DARPA Hydrogel made by a company associated with Bill Gates named Profusa (sounding like ‘pro-infuse or pro-infusion’).

An advanced US Military Defense Industrial Weapons Project technology that is claimed to be a biological-electronic human interface health data gathering information technology for the benefit of mankind that can both send and receive critical health data from within the human body to indicate problems before someone is even aware that they might be sick.

Now if that doesn’t strike you as total BS, coming from an industry whose sole purpose is to kill and murder people globally for ‘defense’ purposes, when we all know their objective is full spectrum control of the planet with wars whose aim is for global domination and one world government.

We only need dig a little bit into this so called benevolent ‘claim’ from the US military to see what is most likely really going on here from a practical RF physics perspective, a view which leads me to believe the real utility of this so-called hydrogel bio-weapon, as it pertains to the current covid 19 plandemic, is to deliver a time delayed deadly poison to the blood at some future date in time that will be blame on some new deadly strain and/or 5G.

Thankfully we don’t have to dig far to expose these supposed claims as false, only 2-3mm deep will show us what we need to know to come to some very basic conclusions.

Images from pdf file: Analysis-of-test-sticks-from-surface-testing-in-the-Slovak-Republic

Figure 1 and 2 Nylon hollow fibers at the broken end of test swabs.


Figure 8 and 9. Darpa Hydrogel beads that form the content of hollow nylon fibers.


Figure 4 and 5 Broken-shaped ends – their task is to disrupt the epithelium (surface layer) on the mucosa, thereby also their breakage and subsequent leaching of the fiber content – Darpa Hydrogel and Lithium. The threads are patented [by Darpa].


Figure 6 longitudinally open fiber with broken end and Darpa Hydrogel content balls.


Figure 12. Result of crystallization after 24 hours.


Figure 10 A hydrogel biosensor (a piece of implantable nanotech) may be used in an upcoming COVID vaccine to monitor your bodily activity – and more.

Above Figure 10 image and description is from link,


The idea being floated by the media everywhere is that these hydrogel antennas form a two-way communications system to provide health data transmission from a person’s body that can be externally detected and deciphered, which on the surface seems utterly ridiculous to me, and I claim the truth is that it these are intended as receiving antennas only.

How can I say this with any confidence?

Well to start with I have my B.Sc. electrical engineering and a RF communications technology diploma as well as extensive real world hands on experience working with designing and tuning of high powered RF microwave amplifiers and low power receivers for solid state RF communications systems back in the early to mid 1990s. I worked a few years extensively with RF systems and electronics development of SSPA – Solid State Power Amplifiers ranging in frequencies from DC to 13.2 GHz up to 10 Watts for the US military on many projects plus other projects in Canada for cable TV and satellite communications and point to point microwave, so I know and have real hands on experience of where I speak and propose two claims to the negative and one claim to the positive that support my position on this subject today.

I no longer do RF work but have extensive experience also currently with the design and manufacturing of power magnetic components and materials and properties for used in switching power supplies, design and manufacture of switching transformers and chokes and other devices magnetic and electrical in nature.

First thing to note, is the relative size or length of the depicted ‘hydrogel biosensor’ claimed for use showed implanted 2-4 mm below the skin surface as shown in Figure 10 above, so relatively speaking, looking at that picture, it appears the length of the device is also about 2-3mm in length or maybe as much as 4mm max. might be guessed from looking at photo. So this is basically is the precise length you’d want in order to match somewhere within the 5G RF spectrum perfectly. Anywhere close is fine as the frequency will be varied.

Claim 1 – Negative: Whatever conductive properties these supposed crystal-polymer-lithium-ion-doped-antenna conductor have, when surrounded by regular muscle, fat or sub-surface skin tissues, tissues that are not located in the electrical parts of the body such as the heart, brain or biochemical nervous system or any other place where necessary electrical activity is essentially taking place where it could cause a short circuit and other electrical problems to the body.

I don’t think any regular human tissue, such as the type just below the layers of skin or in the shoulder muscle area or up inside the nasal passage way will really generate a significant voltage source across these implanted antenna devices that could drive enough electron current to act as a transmitting antenna at 5G over, how could such voltage exist in the body over such a short physical distance of only 2-4mm, the length of the antenna? Tissue that relative to the antenna, must be an insulator, meaning simply that the antenna material itself is much more conductive in relation.

I don’t know how it’s possible for our tissue, being basically an insulator surrounding this tiny little short conductive device, is going to generate any significant voltage and the associated current needed to drive this little passive antenna, to get it to resonate for millions of cycles long enough in the 5G frequency range of 25-40GHz to be detected by some external receiver? I say no way.

Without using some internal power source to boost this supposed biological signal, the ‘initial signal coming from within the body’ to a level that could actually drive an antenna at a power level and frequency of 5G is crazy talk and likely impossible or at the best very difficult to do and detect, full stop. So i say no way it can possibly be transmit anything detectable, and even if it did, how could it be in any way meaningful, what possible information could it contain? It makes no sense to me.

Claim 2 – Negative: But let’s assume for a minute that somehow it can generate a very short 5G pulse burst of RF signal strong enough to be detected, lets say due to a very large muscle contraction or some other internal chemical process occurring nearby (which are very slow speed processes and not even close to 5G speeds) differently at one end of the implant versus the other, in order to induce voltage, let’s say if this is possible, what important medical information could be contained in such a meaningless signal that may indicate you moved a muscle in your arm or nose? What possible medical information could  be interpreted from such a useless signal? I don’t know and suggest it would be mostly meaningless and has no practical medical purpose whatsoever.

This fact alone I think destroys the whole bidirectional premise of their claimed benevolent technology and use for good by DARPA’s military scientists touting it in the MSM.

Even if the hydrogel crystal implanted antenna could somehow generate a very weak signal, what receiver could possibly detect such a faint RF signal against the background noise of our cosmic and earthly radiation that’s going on all around us all the time starting from the big bang. Plus all the natural and man-made signals of our planet today with satellites orbiting the earth in space beaming signals up and down all over the planet, plus now all these new 5G cell towers installation going in currently for cell phones popping-up everywhere all using the same  5G frequency spectrum as these so called, innocent little biomedical antennas?  

How the hell is a little passive signal generated from within the human body  from a little supposed naturally occurring power source of unexplained origin going to generate a clear 5G carrier signal to be strong enough and persist long enough to overcome and out-power all the surrounding background noise and systems powered by batteries and/or plugged into the AC outlet or power grid of a base station with unlimited power; systems running everywhere continuously at high power, relative to these so called internal passive 5G transmitters. BS.

So it is ridiculous to think that these implant antennas devices could ever be strong enough to send out a signal, using no extra power, never mind containing any kind of useful data.

The only way maybe you could possibly see something would be if you went deep underground a few miles into a lead lined room with a super cooled NASA space RF receiver tuned for 5G, then you might be able see a tiny little blip of signal, for a tiny moment in time, if someone moved a muscle, but even that I would be skeptical. It’s just not there from what I can see.

RF communications physics are well known and the signal to noise ratio is always the deciding factor for all ‘modulated communications – containing information’ RF carrier type communications. So it is the signal to noise ratio of the carrier at 25-40GHz that ultimately determines whether a system can even operate, never mind carry data, and up to what distance and conditions are all determine by how clear the received signal is above the noise floor which is also received by the receiver, hence the need for a stronger signal than noise.

So very low power, short duration, one-time non-repetitive signals are almost impossible to detect and receive. It’s equivalent to someone whispering a single word, like hello, over a two hour period long rock concert. No one’s ever going hear you whisper one little word, or even an incoherent noise.

So I will remain highly skeptical of any truth to the claim that this antenna is a bio transmitter and suggest this claim is false and only being used to throw people off from the truth of what it really is, a 5G receiving antenna only.

This type of EMF lie also applies to all the recent talk over the last decade about some type of new weapon called an EMP or Electro-Magnetic Pulse bomb that we keep hearing about that are capable of knocking out the power grid by detonating a nuclear bomb high up in the atmosphere above, but I don’t believe any such device actually exists either, as the EMF energy level dissipates as the inverse of distance from source in an isotropic sphere calculated by one over the radius squared (1/r^2), so even if it did work, at long distance it would be a waste of energy to convert it to EMF from its original form, massive heat energy and the expansion of pressure and gas, to an EMF form.

From an RF perspective, it seems like a total waste to try and convert so much perfectly destructive energy of a nuclear blast into an EMF signal to try and knock out the power grid?

Why use an EMP for that when you could just use the bomb to hit the power station or grid directly instead of hoping a partial conversion to EMF energy to somehow technically destroy the grid with some kind of surge, a surge worse than a lightning strike (which are shunted to ground to protect the system)?

A transfer on energy of this sort is unheard of over such large distances by use of EMF pulse that until this new EMP theory became popular as it has over the past decade. This theory i don’t think has ever even been demonstrated on a small scale or in a lab, never mind on a large scale using a nuclear bomb, so I am skeptical of this non-sense claim as well also from the US military, but this is a different topic from 5G hydrogel antennas we are concerned with here, but just figured it was worth mentioning too since we’re on the subject of US technical BS.

So again, another fantastic claim with no evidence or proof supporting it, either in theory or by experiment that I’m aware of.

So suspect the reason for all the talk about these EMP attacks is because they are planning to cut the US / North American power grid at some time in the future (Texas), and blame it on a terrorist EMP attack, so is all just a setup so that the public are preprogrammed to jump to this wrong-headed conclusion next time a major power outage occurs as a result internal-domestic-sabotage, but will be blamed on a fictitious EMP attack.

Claim 3 – Positive:  These lithium doped conductive hydrogel crystal structures, in the range of 2-3mm long would work prefect as a receiving antennas of an outside RF energy source / EMF fields in the 5G range of 25-40GHz.

As an implanted receiving antenna, the amount of energy received will be predominantly a function of the conductor’s length which determines its ability to match or resonate when subject to the desired external frequency, with the sole objective being to heat-up the antenna by RF absorption causing it to change state and release its pathogens.

This is similar to the heating of any conductors when placed in an MRI machine (or within your microwave oven by accident), if you have any metal particles in your eyes or anywhere within your body, you cannot have an MRI because the very strong low frequency alternating magnetic fields generated by the machine will induce strong eddy currents into any conductive objects in your body and create high circulating currents and heating. A similar action to how an antenna works at 5G if the length of the conductor is just right, or close, it will match the field for resonance and a standing wave of alternating current will be induced into the antenna itself, a counter EMF in opposition to the external EMF, hence resulting in absorption of 5G RF energy and heating effect.

Primary sources for this 5G heating energy I suspect would come from foremost 5G phone handsets themselves as they can transmit, if similar to current 4G phones, up to 1-3 Watts of power, right close to your head, face and shoulder area, likely enough I guess to melt these hydrogel crystals devices or alter them in some way to release their poison. Second would be the cellular base station towers, which could be located miles away from a victim but if nearer to the tower, the power levels could be off the chart, so may want to stay far away from them to if you have one of these implants.

All antennas work by inducing currents that resonate in the conductor at just the right frequency for its length for which it is designed to operate, giving it gain and directionality at that frequency, or close to it, with the key factor being its length, and more precisely, the length needed for a ¼ wave dipole type antenna to match perfectly with 5G.

So the dimensions for a ¼ wavelength dipole antenna for 5G are very simple to calculate and is what pulls this all together for us now.

Wavelength of all RF signals in free space, air / or vacuum, are calculated by the speed of light divided by the frequency. It becomes a little slower when traveling though flesh or water causing slightly shorter wavelength once the EMF enters the material of the human body, but this change is minor and not significant for our purpose here  today either since nothing about any of this is precise. It’s all just in the right range to work.

So for 5G which claims to operate in the 25-40GHz band, at 40GHz the wavelength in free space is (3×10^8m/s)/40GHz = 7.5mm so the ideal length for an antenna at this frequency being a quarter wave length dipole is just 1.875mm at 40GHz, and at 25GHz, the length wavelength is 3×10^8m/s / 25GHz = 12mm, so ¼ wavelength at 25GHz is 3mm exactly, so we have perfectly the required antenna dimensions needed to receive 5G at around basically the 2-3mm length for a perfect matching ¼ wave dipole antenna.

So then what happens? Well, my guess is these little conductive crystal antennas heat up when exposed to high enough power at 5G for long enough that it causes them to resonant, heat-up and and melt, or change state somehow of the crystal structure, causing it to release some type matter or pathogen contained within it, part of the original hydrogel solution that was locked up in the crystal, such that an assortment of mrna type nano-bots could theoretically be released upon exposure to high strength 5G RF power.

So all they have to do now is get everybody injected with these things and then wait to use it as they see fit or as the 5G systems continue to ramp up and become popular, lots of people will start getting sick and will actively spread and shed deadly proteins that they will blame on 5G.

Canada’s ‘Vaccine-Genocide’ Escalates to Police State with Barricades!!

April 18th, 2021

I wouldn’t believe it if it wasn’t true but Canada has been taken over by foreign powers who are murdering the population with an experimental gene mRNA therapy that has no long-term safety or effectiveness data whatsoever for anything and is most likely very damaging and dangerous with the true intent to poison the population and make them sterile because that is what they have been working on for years now testing in India, Africa, South America and anywhere else the Gates Eugenics Foundation operates or has partnerships.

Worse than that, there really is no covid cold virus pandemic to be worried about and the whole thing is really a fabrication by media and government with an agenda.

Covid is a cold virus and most sick people have the seasonal flu which is cause by low exposure to sunlight and low vitamin D levels and that’s  why it’s seasonal with short days in the winter in the northern hemisphere. So keeping people locked up indoors only makes things worse not better.

Government policy is 100% wrong to keep people indoors and deprived of sunlight causing worse vitamin D deficiency and a worsening flu season and increased depression and anxiety with constant media blasting fear. It’s disgraceful and pure evil.

It’s all a fraudulent government  policy founded on bogus statistics and models generated by anonymous government experts who work for the government.

Much the same can be said for the whole of Canada’s healthcare and education systems too, both are horribly run government monopolies that are terribly costly and constantly misinform Canadians with lies and propaganda. The government of Canada has been brainwashing its people from cradle to grave for over 100 years now and can tell them they’re eating chocolate while they feed them shit and even raise their taxes to pay for it all while in the process continue to destroy more business investment and capital formation. It’s all being done by the British Imperialist Canadian system. These are facts and people need to open their eyes and stop believing the lies or that they care.

So the Canadian governments at all levels have had a whole year and $380B spent or gone missing since 2020 and still we have no healthcare facilities to manage the supposed third wave covid crisis because our Ontario healthcare system sucks, so only ‘vaccines’, which are not actually vaccines at all; by definition they are therapeutics – and in reality should not have been emergency approved; and suspect strongly this deadly third wave now is being caused by the experimental ‘vaccine’ injections themselves and that is what is now driving a real and serious illness across the nation, all while blaming it on bogus new deadly strains.

It’s a sick joke and a pack of LIES. The whole covid thing and government response is a fraud from top to bottom with all their experts and relations with big pharma.

Notice the clamp down on free speech and censorship gone wild this past year, or few years now with YouTube who has been pulling channels and changing their search algorithms to only favor MSM narratives and have now censored and continue to censor all dissenting views. Taken to a whole new level in 2020 with covid-19.

No dissent is now allowed by any professional in the west or you will lose your job or worse. So much for free speech, science and debate, i guess all that’s left is war.

Or, maybe it’s time for Canadians to rise up and say “NO MORE”.

Talk to your  local police, who are your neighbors, gather together and talk and communicate with each other in person for real.

Canadians need to convince the police and the military that what the government is doing to Canada is fundamentally wrong and is not Canadian.

Canadians now must bring together the law enforcement community of men and women of Canada, along with the armed forces of Canada, and the good politicians of the opposition to these lock-downs and together can defend Canada’s rights and freedoms from the evil powers that have taken control of the nation.

We now must bring them to justice and stop their genocide and this can end peacefully for most of us. Right?

These lock-downs and vaccines are worse than the disease. Of this i have no doubt. Canada is under attack by communist takeover via medical tyranny and this has to end now or it is over for Canada as a free nation, and do not allow their gun grab either, they are trying to disarm you.

For the virus, there are effective therapies that cost only pennies, like vitamin D, Sunlight, exercise; and for medications there’s HCQ and Ivermectin taken with zinc and vitamin C and D etc. are all very powerful and known effective anti-viral and anti-parasitic medications long used against Malaria, Dengue and Ebola and many other well known deadly viruses and parasites, long proven safe, effective and cheap and on the worlds essential drugs lists for more than 50 years and counting.

So the vaccines are a scam and a diabolical plan since there really is no need for any vaccine against any covid (common cold) virus. So what are they really up to? And who are ‘they’? Well that’s another subject.

My honest to God opinion. Canada is being murdered.

This is what is happening now and the lock-downs are being done to force vaccines into people to kill them. Persuasion at this level of house arrest across the nation for over a year is cruel deprivation of the most basic human rights granted to all by God.

God help the people of Canada.

Bitchute; Canada Has Become an International LAUGHING STOCK – Viva on the Street ONTARIO UPDATE

NiMH 2000 Cycles

April 22nd, 2014

Comments recently asking how the NiMH chemistry fared beyond the first 1000 cycles in the battery life cycle test was a question i asked myself back in the day as well, so a second set of 1000 cycles were run but results were not posted til now.

After a second 1000 cycles the NiMH capacity faded an additional 5%, dropping to 58% of rated capacity from 63% after the first 1000 cycles.

The NiMH chemistry held up well in terms of cycle life when not abused or over-heated by the charger which in-practice can be a difficult thing to do with NiMH battery types due to difficulty at detecting and terminating a full charge correctly and preventing damage from over-heating, especially at faster charge rates such as C/2 and without the use of a temperature sensor.

The PCBA 5010-4 battery analyzer uses a custom ‘voltage only’ method of full-charge termination with multiple redundant detection methods for NiMH and NiCd chemistry types developed over ~15 years which now demonstrates its effectiveness in life cycle testing by not overheating the cells or causing venting of electrolyte and capacity loss other than by what seems to be normal loss as a function of normal use.

Lithium ion failure

April 4th, 2014

A good explanation of why lithium ion batteries lose capacity over their cycle life is that components of the electrolyte oxidize at the cathode under high voltage and high temperature conditions which then are reduced at the anode side and eventually block-off the porosity and ionic conduction deeper into the anode material which then results in lithium metal plating and shutting down of the cell.

This seems a more likely cause and effect than my explanation for the lithium ion lifecycle test below thinking the failure was due to pulverization of the cathode material since that would in turn cause oxygen release and gassing into a puffy cell which did not happen, so i think electrolyte reduction and coating on the anode would better explain the sudden loss of capacity.

A very interesting theory and technique for measurement of electrolyte degradation are explained in the video below by Jeff Dahn of Dalhousie University.

Why do Li-ion Batteries die ? and how to improve the situation?

Professor Jeff Dahn (Dalhousie University)
  • CC

Lithium Ion – Life Cycle Test

July 30th, 2013

A lithium polymer cell from BAK battery was cycled on channel one of the PCBA 5010-4 battery analyzer consisting of a standard cobalt oxide cathode and carbon anode in a pouch enclosed flat prismatic shape with nominal voltage of 3.6V and 2,800 mAhr rated capacity.

Figure 1 – Initial capacity test at C/2 rate

First discharge cycle of new cell achieved 97.3% of rated capacity at C/2 rate with a strong voltage profile holding-up between 4.2V to 3.5V for first 90% of discharge and then fell-off quickly toward 3V over last 7% of discharge.

Figure 2 – Life cycle result at C/2 rate

Capacity faded quickly during the first 50 cycles and then more slowly thereafter for next 500 cycles. From cycle 550 to 1000 capacity fade started to increase more quickly again and worsened severely between cycle 1000 to 1200 where capacity fell-off toward only 10% of its initial value indicating a serious problem with the cell’s ability to function usefully.

Figure 3 – Final capacity at C/2 rate after 1,000 cycles

The final voltage profile after 1,000 cycles shows a lower level voltage offset indicating an increase of internal resistance when compared to cycle number one and also shows a steeper declining voltage slope indicating worsened kinetics and structural changes of active materials.

Overall, the results are as expected except for the rapid decrease in capacity over the 1000th cycle which was a little surprising. I suspect that there may have been a structural change due to pulverization of the cathode material that may have then in turn contaminate the cell’s electrolyte or possibly locked-up active lithium into irreversible bonds which then hastened the capacity decline.

Copy of Excel file for this report can be downloaded here, Lithium Ion Battery Analyzer Life Cycle Test.xls

Nickel Metal Hydride – Life Cycle Test

February 29th, 2012

Cycled on channel three of the PCBA 5010-4 battery tester were a pair of series connected Nickel Metal Hydride cells from Sanyo, part number HR-AU, that gave a nominal battery voltage of 2.4 Volts and a typical capacity rating of 2,700 mAh at the C/5 discharge rate with a minimum capacity rating of 2,450 mAh according to the manufacture’s datasheet. However, during the very first discharge cycle of the Prime function, the highest capacity achieved (at the C/2 discharge rate) was only 2,460 mAh or 100.4% of the minimum rated capacity. At a lower C/5 discharge rate the battery’s capacity would have probably achieved a few percentage points higher, closer to the 2,700 mAh manufacture’s rating. Regardless, the capacity quickly fades by 13% after only 50 cycles such that by discharge number 50, at the C/2 rate, the capacity falls to 2,131 mAh or 87.0% of the minimum 2,450 mAh rating.

Figure 1 – Initial capacity test at C/2 rate

Following a few initial prime cycles on the pair of brand new cells, Figure 1 shows the first discharge capacity and voltage profile result of the life cycle test. The capacity is seen to be 2,381 mAh or 97.2% of the 2,450 mAh minimum rating and the voltage holds fairly flat above 2.4 Volts for most of the curve.

Figure 2 – Life cycle test results at C/2 rate

After 200 cycles at 100% depth of discharge (DoD) the capacity fades to 1,838 mAh or 75.0% of the 2,450 mAh rating. After 500 cycles the capacity drops further to 66.6%, and after 1,000 cycles, the capacity remaining is only 63.1%. Overall, the performance is as expected and actually quite good

Figure 3 – Final capacity at C/2 rate after 1,000 cycles

The final discharge capacity after 1,000 cycles was only 63.1% with a fairly sloped voltage profile.

The life cycle test results were overall quite good. To reach 1,000 cycles at 100% DoD and still have over 60% capacity remaining is not bad. With only two cells in series it’s very easy to keep the two cells balanced such that neither cell is subject to abuse. Problems often arise in higher voltage NiMH battery packs when numerous cells are connected in series to obtain higher nominal voltage. It often leads to a cell imbalance problem where the lowest capacity cell begins to suffer the deepest discharge stresses and poorer charge acceptance that can rapidly degrade the cell’s capacity and quickly limit the overall cyclic performance and capacity of the pack.

Another reason for the good results is likely the quality of the charger and the algorithm used for full charge detection without overcharge in the PCBA 5010-4 battery analyzer. Also, a very important factor with NiMH batteries is the physical arrangement of the cells within the pack for thermal reasons. I’ve seen many packs over the years with multiple cells connect in parallel or series – often bundled in a spiral arrangement – to increase the capacity and voltage of the pack. The result is cells wrapped in cells with little surface area for removal of heat. Problems then arise during high rate charging because NiMH cells are exothermic on charge – meaning they give off heat – possibly resulting in a significant temperature rise affecting the pack’s voltage enough to make full charge detection by voltage only methods very difficult. Poor full charge detection then results in frequent overcharging and excessive heating of the pack which shortens cell life. The overheating is especially troublesome for cells packed in the middle of the battery where the temperature rise can be most significant; leading to cell imbalance problems once again, rapidly degrading the whole pack.

Sealed Lead Acid – Life Cycle Test

November 25th, 2011

This post and the next three to follow will examine the life cycle test results of the four most common battery chemistries in use today; a sealed lead acid, a nickel metal hydride, a nickel cadmium and a lithium-ion polymer; using a PCBA 5010-4 battery analyzer to perform 1,000 charge/discharge cycles at the C/2 rate. The two-hour discharge rate was chosen to keep the discharge stress fairly low while still providing a brisk pace for achieving a thousand cycles in a reasonable amount of time. The C/2 discharge rate is admittedly fast for a lead acid battery whose capacity is typically rated by the manufacturer at the C/20 rate, this will result in a lower discharge capacity level for the lead acid type, but the idea of this life cycle testing with different chemistries is simply to compare the relative performance of the four most common chemistry types in order to gain a general appreciation for their capabilities and differences.

Figure 1 – Initial capacity test at C/20 rate

  The first sample to finish cycling 1,000 cycles was the 12V, 7.2Ah, VRLA battery from Panasonic, model LC-R127R2P1. Prior to the start of life cycle testing, the new battery was tested at the C/20 rate to ensure that  it meets its 7,200 mAh rated capacity, and it did, by achieving 7,555mAh or 105%.

Figure 2 – Life cycle test results at C/2 rate

At the C/2 discharge rate the capacity immediately drops to 5,700mAh and then  steadily declines until reaching 1,650mAh after only 250 cycles, after which time the rapid capacity loss slows and the capacity averages near 1,300mAh for the remaining 750 cycles.

Figure 3 – Final capacity test at C/20 rate

A final discharge test was performed at the C/20 rate once again to see how the battery would perform at the lower discharge current and its tested capacity immediately bounced back to 40% of its rated capacity.

These life cycle test results are interesting with a couple of things worth noting. The first is the rapid capacity decline during the first 250 cycles followed by the slower capacity decline for the remaining 750 cycles. It seems as though there are two different wear mechanisms at work simultaneously, one that deteriorates the battery capacity very rapidly and then exhausts itself, and a second that deteriorates the battery capacity very slowly but endures.

The second item worth noting is the sudden voltage drop near the end of discharge in figure 3, with a small plateau, followed by another quick voltage drop to terminate the discharge. These quick voltage drops are due to lower capacity cells losing their voltage rapidly, unable to maintain their load current at voltage. This indicates a probable cell imbalance issue whereby the lowest capacity cells are not getting the opportunity to fully recharge during the charge portions of the cycling, and in turn are limited in their discharge capacity during the discharge portions of the cycling. A cell imbalance condition may be effected by the heavy cycling demand of the life cycle testing itself which leaves little time for float charging at the end of each charge portion that would normally help to balance the cells connected in series. A cell imbalance problem is typically a self-perpetuating vicious circle and from looking at the discharge voltage profile results during the first 250 cycles (not shown in this post), it can be seen that a rapid voltage drop near the end of each discharge portion starts to appear gradually during the first 250 cycles, so this may in fact be the real reason for the rapid capacity loss during the first 250 cycles, a cell imbalance problem, and not a two stage wear mechanism as was first proposed above.

A possible way to determine if a cell imbalance issue is in fact the main problem causing the rapid capacity loss in the first 250 cycles would be to repeat the life cycle testing once again, but in the second attempt try setting the test configuration to using a higher charge voltage during the charge portions in order to force more capacity into the series connected cells with the intent of providing an increased amount of overcharge to the healthier cells while likewise providing a more complete charge to the lower capacity cells in order to maximize the ability of the cells to work together and prevent a cell imbalance problem from self perpetuating toward rapid capacity loss.

The charge voltage maximum used for the testing in this example was 14.400 Volts and the recommended charge voltage from Panasonic for cyclic applications with this battery is 14.5-14.9 Volts, so in a future life cycle testing I would try using the highest recommended charge voltage at 14.900 Volts to see what improvements can be achieved.

Lithium Polymer Battery

May 13th, 2011

A lithium polymer battery is still a lithium ion battery except that it uses a solid plastic electrolyte material for ionic conduction between the anode and cathode electrodes rather than a liquid solvent. The solid polymer material still allows for movement of a dissolved lithium salt and ionic conduction between the electrodes while at the same time provides an insulating barrier to electronic conduction and physical separation of the positive and negative electrodes.

The main difference of a lithium polymer battery is the solid electrolyte’s solid properties and therefore methods by which movement of ionic molecules occurs within the material. There are two ways by which a lithium ion can propagate within the plastic electrolyte medium, one is by linear conduction along the axes of the polymer chains and chain segments, the other is by chain segment motion, bending or swinging action. In either case, the force for the movement results from the electric field interaction that exists between the cell’s electrodes and the charge on the free moving lithium cation.

Advantages of polymer electrolyte cell construction over liquid electrolyte cell construction are first and foremost the solid electrolyte itself is non-volatile and will not leak and therefore is less of a safety hazard in most applications. It can also be pressure laminated between the electrodes to provide a uniform solid mechanical contact between the electrodes that will not shift or move once assembled, in turn allowing for flat planar shaped cell designs and is not limited to cylindrical shaped packaging commonly used for liquid electrolyte systems. A further advantage then becomes the 100% packing factor and volumetric utility achievable with rectangular shaped cells for construction of multi-celled battery packs versus the use of cylindrical shaped cells that are theoretically limited to a volumetric utility of pi/4=78.5%.

Electrovaya – Overcoming the Carbon Conundrum One Step Above the Rest

August 9th, 2010

United States patent 5721067 titled ‘Rechargeable lithium battery having improved reversible capacity’ represents a significant breakthrough by Electrovaya for dealing with the difficult problem of first charge capacity loss with lithium ion cells using carbon as the active anode material. The irreversible losses of carbon have long plagued the lithium ion battery industry and continue to do so to this day for manufacturers not authorized to use Electrovaya’s exclusive breakthrough technology.

In a traditional lithium ion cell the only source of lithium within the cell upon construction is that which is contained in the cathode material itself such as lithium-cobalt-oxide, lithium-manganese-oxide or lithium-iron-phosphate. These cathode materials are produced in conjunction with lithium containing source ingredients such as lithium carbonate in order to synthesize fully lithiated cathode materials in the discharged state.

The well known and predominant industry challenge of using carbon anode materials is that they irreversibly consume approximately 20% of the lithium received during first charge. Lithium, electrolyte and other additives within the cell are adsorbed during formation of the solid electrolyte interphase layer (SEI) and are locked away in non-active carbon sites reducing the total reversible lithium content of the cell, effecting an immediate and unavoidable increase in mass of under-utilized cathode material, adding to the cell’s cost, size and weight.

Electrovaya’s unique invention allows these irreversible losses to occur with little to no concern for the amount of lithium and electrolyte consumed during the formation process. By adding a novel twist to their manufacturing technique, Electrovaya has placed a significant portion of their formation process ahead of the final assembly stage. The exact nature of their technology is explained in great detail in their patent, but the main focus of the invention lies in the addition of an extra step in the cell’s manufacturing process whereby assembly of the complete cell is performed as usual, minus the aluminum foil current-collector-laminate normally covering the outer cathode surface.

With the outer cathode surface exposed, a secondary lithium containing source (10) is brought into close proximity and ionic contact via a secondary electrolyte (8) with the primary cathode (6). The initial formation process then proceeds by driving lithium ions from the secondary lithium source (10), through the secondary electrolyte (8), primary cathode material (6), across the cell electrolyte (4), and into the carbon anode (2), in order to obtain a partial charging and substantial formation of the SEI layer between the cell electrolyte (4) and carbon anode (2). Once the partial charge is complete, the secondary source of lithium (10) and electrolyte (8) are removed and the traditional aluminum foil current-collector is placed in contact with the outer cathode surface as usual for final cell assembly. After final packaging and sealing the completed cell can then continue with further charging and testing as required.

Development of this innovative pre-charging technique has enabled Electrovaya to shift their focus away from the lithium loss issue more toward the development of substantial SEI layer formation techniques that can be more robust than other manufacturers predominantly occupied by lithium loss issues. Formation of a sound SEI layer is crucial for reliable enduring battery function providing a barrier of separation between the electrolyte and carbon electrode. Once formed, the SEI resists any further interaction between these two phases while facilitating the transport of lithium ions between the carbon electrode which carries only individual Li atoms and the bulk electrolyte which carries larger lithium ion salt molecules such as Lithium Hexafluorophosphate (LiPF6)

Elimination of the inactive cathode-material-content and restrictions on the amount of lithium and electrolyte consumed during formation of the SEI layer presents a significant technological advancement for producing cheaper, smaller, lighter cells with superior SEI layer formations effective for use with all cathode materials commonly used today and new cathode materials in the future.

Lithium Ion Anode Materials – Ordered and Disordered Carbon

June 10th, 2010

The most common lithium ion anode material used today is carbon in its highly ordered graphite form with a maximum theoretical capacity of 372 mAh/g by the formation of LiC6. Graphite is the most thermodynamically stable form of carbon structure commonly referred to as the standard state where carbon atoms are held together by strong covalent bonding in a hexagonal lattice structure forming expansive sheets or layers loosely coupled together by much weaker van der Waals bonding between layers. The interlayer spacing provided by the weakly bonded graphene is highly accommodating to insertion and extraction of lithium cations. The graphene layers also have excellent electronic conductivity through the tightly bonded carbon planes providing low resistance electron pathways to facilitate easy electron pairing with lithium cations throughout the material. The graphite electrode’s structure is mechanically stable and highly cyclable undergoing very small volume change of only about 10% from fully lithiated to fully de-lithiated and can provide 1000’s of cycles without any appreciable loss of capacity.

Non-graphitic or disordered carbon contains the same covalently bonded hexagonal lattice structures as graphite but in much smaller pieces differing in size and orientation such that there’s no consistent expanse of ordered layering, similar to a sheet of tempered glass that’s been shattered into pieces and dumped into a pile. Amazingly, these disordered carbons can exhibit very high reversible capacities in the range of ~400 to ~2000 mAh/g. The exact mechanism for the higher than theoretical capacity over lithiated graphite LiC6 at 372 mAh/g is somewhat controversial but may be due to a collection of factors such as lithium being held in deposits on the carbon’s prismatic surfaces and edges or held in the carbon’s pores and surface defects or held in covalent Li2 formations similar to lithium metal deposits but not quite due to the surrounding carbon. Volume change in disordered carbons is small, less than 10%, due to the soft disordered nature and increased spacing between smaller carbon pieces. Problems with disordered carbons are they can exhibit higher voltage hysteresis than graphite between charge and discharge functions causing lower cyclic efficiency and heating, also their higher capacities are often obtained at only a few milli-Volts above Li+/Li increasing the risk of lithium metal plating and higher irreversible first charge capacity losses compared to graphite.

Overall, lithiated graphite electrodes are fantastic anode materials in lithium ion batteries with amazing abilities for graphene layers to operate super-efficiently at insertion, storage and removal of lithium cations in and out of the van der Waals spacings between layers. Highly ordered graphite is cheap to manufacture, light weight, abundant, non-toxic, environmentally friendly, has high safety, high capacity, high reversibility, high cyclability and low volume change upon lithium insertion/extraction, and operates at low potentials versus Li+/Li near 0.1-0.2 Volts. The only shortcomings of lithiated carbons are they have high irreversible first charge capacity losses and a double edge sword of low redox potentials versus Li+/Li that can at low temperatures result in lithium metal plating when charging due to slow insertion kinetics at low temperature. These problems can be managed and overcome by improvements in manufacturing processes, materials, electrolytes, additives, coatings and intelligent battery management systems.